Is Open Source Eating the World’s Software? Measuring the
Proportion of Open Source in Proprietary Software Using Java

Binaries
Julius Musseau® John Speed Meyers George P. Sieniawski
Mergebase Chainguard IQT Labs
Canada USA
julius@mergebase.com jsmeyers@chainguard.dev gsieniawski@iqt.org

C. Albert Thompson
Ford Motor Company
USA
cthom409@ford.com

ABSTRACT

That open source software comprises an increasingly large per-
centage of modern software applications has become conventional
wisdom. The exact extent to which open source software consti-
tutes today’s applications is indeterminate, however, at least by the
standards of the academic software engineering research commu-
nity. This paper proposes a methodology and associated tool that
can analyze Java binaries and determine the proportion of open
source that comprises them. This paper also presents empirical
measurements of 5 commercial Java software systems, reporting
OSS proportions between 76.2% to 99.9% among these 5 systems,
including a historical analysis covering 6 versions and 12 years for
one of the subject systems.

KEYWORDS

Open Source Software, Measurement, Methodology, Java, Binaries

ACM Reference Format:

Julius Musseau, John Speed Meyers, George P. Sieniawski, C. Albert Thomp-
son, and Daniel German. 2022. Is Open Source Eating the World’s Software?
Measuring the Proportion of Open Source in Proprietary Software Using
Java Binaries. In Proceedings of Mining Software Repositories 2022: Interna-
tional Conference on Software Engineering (MSR ’22). ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

That modern software developers often use open source compo-
nents to build applications and that open source software compo-
nents have become pervasive is not in doubt. At the same time, the
extent to which modern software applications contain open source
components is indeterminate, at least for analysts who expect a
rigorous and repeatable method and answer.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MSR 22, May 21-29, 2022, Pittsburgh, PA

© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/1122445.1122456

Daniel German
University of Victoria
Canada
dmg@uvic.ca

Existing analysis on the prevalence of open source components
in software applications largely derives from the commercial grey
literature, along with a handful of academic studies [1-3] which we
summarize in Section 2. As a prominent example of grey literature
claims, a 2021 report by Synopsys titled “Open Source Security and
Risk Analysis” includes an analysis of approximately 1500 client
codebases and concludes that “75 percent of all codebases were
composed of open source.” [12] Sonatype, in a 2020 analysis, found
that “80% to 90% of a typical application is composed of [open
source] components.” [11] These and other analyses, some survey-
based (e.g. one done by Tidelift), have also examined the percentage
of applications that contain any open source components and the
average number of components found in typical applications. [14]

While these analyses are often based on large numbers of obser-
vations and use actual industry codebases, they frequently neither
reference any tool for measuring the amount of open source content
in a codebase nor describe a particular methodology. Additionally,
these analyses often use proprietary customer data unavailable to
outside researchers, which complicates generalizing the results.

Our goal is to measure the extent of open source code in a code-
base, this paper proposes a methodology to measure the propor-
tion of open source code in Java software by analyzing the fully-
qualified class names of the classes that compose it and their cor-
responding sizes. We have developed an open source tool, called
contains-oss,! that implements this methodology, enabling the re-
searcher to calculate what percentage of a codebase is open source.

The next section discusses related work. Section 3 summarizes
challenges associated with measuring the open source content of a
codebase. Section 4 describes the methodology, followed by section
5, which covers the associated tool in detail. The sixth section
applies the tool to several industrial Java codebases. Finally, Section
7 describes the limits and ambiguities of measuring the percentage
of a codebase that is open source and proposes future research
related to this topic.

2 RELATED WORK

Previous software engineering studies have sought to analyze open
source code reuse using a wide variety of approaches. For instance,
Dann et al. [3], examine how forking, patching, and "re-bundling”

lcontains-oss is available at https://github.com/mergebase/contains-oss

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://github.com/mergebase/contains-oss

MSR ’22, May 21-29, 2022, Pittsburgh, PA

existing code can have an adverse impact on the performance of
OWASP Dependency-Check, Eclipse Steady, GitHub Security Alerts,
and three additional commercial vulnerability scanners. Following
analysis of over 7,000 Java codebases developed at a major Euro-
pean multinational, the authors present a four-part typology of
code reuse as well as a novel test suite called Achilles. Importantly,
in analyzing those codebases’ direct and transitive dependencies,
Dann et al. [3] rely on each software project’s bill of materials
(BOM), as generated by Eclipse Steady. As we discuss in Section
4, our methodology does not require the analyst to have access to
a BOM. Instead, we focus on the fully qualified names (FQNs) of
Java classes, which allow us to trace the origins of a given class to
open source ecosystems like Maven-Central. Furthermore, although
Dann et al. "checked how many classes on Maven have identical
FON[s] as ... 254 vulnerable classes and equivalent bytecode,"[3],
their FQN analysis centers on Java re-compilation.

In addition, Bavota et al. [2] investigate how the Java subset of
the Apache ecosystem evolved from 1999 to 2013. They focus on
the change history of 147 Java codebases, including refactoring
operations, license changes, developer discussions, and the stated
rationale for bugfixes. Instead of analyzing the FQN of Java classes,
however, Bavota et al. crawled "the SVN repository and identifie[d]
the folder containing each of the project releases identified by the
crawler" to find inter-project dependency listings [2]. In codebases
that lacked explicit listings (37% of the total), Bavota et al. instead
took the Levenshtein distance between Jar archive names and Java
release names.

Turning to another related study, Bauer, Heinemann, and Deis-
senboeck distinguish between important third-party Java libraries,
which "play a central role and thus have a significant impact on
[Java project] maintenance"[1] and unimportant third-party Jars.
This distinction, in turn, hinges on the number of distinct API
method calls to a library, the percentage of Java classes "affected"
by a call when traversing the abstract syntax tree (AST) of the
codebase, and the ratio of API utilization to the total number of
API methods available, among other static analysis metrics [1]. The
authors then proceed to explain how to implement these AST tra-
versal methods and subsequently visualize the results in ConQAT,
a software quality assessment toolkit. However, Bauer, Heinemann,
and Deissenboeck acknowledge their method does not consider
"libraries that are indirectly used via other libraries," instead putting
the onus on the analyst to consider transitively referenced Jars.

Heinemann et al. have previously investigated the extent of
code reuse in open source Java codebases.[5] Ruiz et al. in two
separate studies analyze the Android marketplace, especially class
reuse, finding widespread evidence of reuse.[8][9]. German and Di
Penta propose a method for open source license compliance.[4]
Scwittek and Eicker analyze third party component reuse in Java
open source software by measuring the number and provenance
of open source components in nearly forty open source Java web
applications.[10] Ishio et al. propose and evaluate a technique for
detecting third-party components in Java releases.[13]

3 METHODOLOGY

Measuring the percentage of open source code within a proprietary
codebase presents two fundamental hurdles. First, researchers often
only have access to a compiled binary, not source code. Accordingly,

Musseau et al.

any potential methodology for measuring open source content must
deal with this severe limitation. Second, partitioning a codebase into
mutually exclusive proprietary versus open source sections is chal-
lenging. Modern applications, no matter the language, often do not
explicitly mark particular files or modules as "open source,’ though
some informal conventions associated with select programming
languages and programming practices can aid such a partitioning.
Our approach is based on the following observations regarding
binary Jar files:

(1) Every entity in a binary Jar has a fully qualified name (FQN),
which, in general, uniquely identifies the entity within the
universe of Java software. In most cases, an analyst can
use this FON to trace back the origin of the entity. For ex-
ample, the class PatternLayout, part of Apache’s log4j-core
library, has the FQN org.apache.logging.log4j.core.layout.-
PatternLayout. The first two components indicate that it
originated in the Apache organization, the next 3 compo-
nents indicate the specific library. Thus one can use the FQN
of an entity to determine if such entity is OSS or not.

(2) With few exceptions, every class and method present in the
source code of a Java file is compiled into its Java binary, and
using its FQN, it is possible to map one to the other.
In addition, most Java binaries are distributed with debug
information?. This debug information contains line number
information. It is therefore possible to quantify the number
of lines of a source code file. It is also possible to know which
lines of this source code file are actually lines of code (as
opposed to comment or empty lines) since every line of code
will be referenced in the debug information of a binary.

—
[SY)
=

Our method has two steps, the first of which is optional.

3.1 Preliminary step (optional): create a list of
open source entities and their FQN's

Using Maven-Central it is possible to create a list covering a very
large proportion of all FQNs in the known OSS Java universe3. Note
that, in some cases, the name of the organization might be sufficient
to identify whether the entity is OSS or not (e.g. org.apache). How-
ever, this is not always the case; for example, Jira (com.atlassian.jira)
publishes some entities in Maven-Central, but it also uses this prefix
for its own proprietary software. The process to create this list is
straightforward:

e For every binary Jar in Maven-Central:
(1) Extract all the .class files in the Jar
(2) Add each extracted FQN from the Jar to the list of known
0SS FQNs

Note that this method assumes that all versions of a library
are OSS. For example, if earlier OSS versions of the library were
published to Maven-Central, while later private proprietary ver-
sions were not, then no assertion can be made regarding whether a

2A developer must explicitly configure Maven or Gradle to not include debug symbols.
In addition, because developers find Java stacktraces with line numbers much easier
to work with, developers are further incentivized to leave debug symbols enabled

3 Additional public Maven artifact repositories could be added (such as spring-central)
to increase coverage, but due to its popularity we suspect Maven-Central likely contains
at least 90% of all known OSS Java FQNs

Is Open Source Eating the World’s Software? Measuring the Proportion of Open Source in Proprietary Software Using Java Binaries

given FQN is OSS or not, at least not without also further assess-
ing version information. However, to simplify our methodology,
within this study we assume that if one FQN is identified as OSS,
then all versions of that same FQN are also OSS, despite some rare
situations where this assumption does not hold. Finally, truly de-
termining whether a library itself is OSS is complicated and can
depend on numerous factors and even different definitions of "OSS"
(e.g., OSI-approved, SPDX-designated or other criteria). However,
for this study, we considered a library’s current presence (circa
December 2021) and availability for download from Maven-Central
as sufficient indicia of it being OSS. For example, we considered
Oracle’s "0jdbc10-19.3.0.0.jar" file to be OSS, despite the fact it uses
a relatively OSS-incompatible license: "Oracle Free Use Terms and
Conditions (FUTC)". There are two reasons for using this definition
of OSS: First, the fact that Maven-Central themselves are permitted
to redistribute the Jar file signifies a certain degree of permissive
reuse. Historically, Maven-Central has removed many Jar files from
their archive upon request from copyright holders. Second, since
the goal of this study is to measure how much of a given software
system is internally developed by its development team vs. exter-
nally imported and re-used as OSS, we believe that categorizing
any Jar file that successfully downloads from Maven-Central as
OSS (e.g., "0jdbc10-19.3.0.0.Jar") made sense for analysis purposes.
The complete list of 3,600,000+ distinct FQNs we extracted from
Maven-Central is included in our replication package inside the file
"names.uniq.gz". This list also includes all FQNs observed within
several JDK versions and variations (JDK 1.6.0 to JDK 17, Oracle
and OpenJDK), since it would not make sense to categorize these as
internal in cases where they appeared inside software systems. This
list also included FQNs derived from inner-classes, as well as Java
bytecode generated from JVM-compatible languages such as Scala,
Clojure, Kotlin, etc. Since our technique counted OSS proportion
using bytecode analysis, our technique was not limited to only Java.
Any language that compiles to JVM bytecode could be analyzed.

3.2 Processing the Java binary to be analyzed

For input, this method requires a Jar file. Crucially, this method
does not require access to the source code or to a Software Bill of
Materials (BOM), as in [3].

(1) For each class in the binary Jar:
(a) Determine if it is open source or not using its FQN.
(b) Measure it (e.g., by observing the largest line number
present within its debug symbols)

Classifying a class as OSS or not can be easily done with a pre-
computed set of FQNs that are known to be OSS. Alternatively, an
analyst can look up the main prefixes present in the Jar; depending
on the number of different libraries present in the Jar, it might be
straightforward or time-consuming to classify the FQN prefixes into
OSS and not. Sometimes developers copy OSS libraries into their
source code tree to simplify dependency management and deploy-
ment. In most cases (and to avoid costly renames), the developers
maintain the same file structure of the library. Thus, the FQN of an
embedded library has a suffix equal to the FQN of the library. E.g.
a log4j class might have the FQN com.myorg.depend.org.apache.-
logging.log4j.core.layout.PatternLayout. In cases like this using a
human analyst will be more accurate, since a pre-computed set of

O 0N U R W N e

—-
jon

MSR ’22, May 21-29, 2022, Pittsburgh, PA

known-OSS FQN’s is unlikely to contain these (artifacts like this
are unlikely to be published in Maven-Central).

Once the FON has been classified (as OSS or proprietary), mea-
suring the class file can be done in various ways. A class file always
corresponds to exactly one source code file (though not the other
way, because of inner-classes). It is also easy to measure the number
of methods in such a class. If debug information is present, it is
possible to extract, at the very least, the largest line number refer-
enced, which will correspond to the number of lines in the original
Jjava file. It is also possible to extract every line number referenced
in the binary Jar (if the line is referenced in the binary, it must be a
SLOC in the original source code—and not an empty line), however
this method will under-count certain types of lines of code, such as
those that split a long statement, those with only braces, and many
others. Nonetheless, research has shown all these metrics tend to
correlate strongly [7].

Since our goal is to measure the proportion of OSS in proprietary
software, we are less interested in an exact measure of size, and
more on a comparison between the two subsets. Thus, any threat
to validity in the measurement of size is likely to be the same for
both subsets.

Our replication package includes a sub-directory called "repli-
cation" where we stored the raw data results in JSON files from
running the contains-oss tool against the subject systems. Note:
The Ford Motor Company ran the contains-oss tool, but was not
willing to share replication data beyond the total number of lines
observed for each of their subject systems. All subject systems
were analyzed using the pre-computed set of OSS FQNs (based on
Maven-Central), except for the Ford systems where a human analyst
manually conducted the partioning into OSS and non-OSS based
on names within the FQNs themselves (e.g., those that contained
"com.ford" vs. those that did not).

4 TOOL: CONTAINS-0SS

"atlassian-oauth-plugin-1.0.8.1.jar" :{
"lines.internal":2466,
"lines.external":4588,
"breakdown.internal" :{
"com.atlassian.oauth.bridge":386,
"com.atlassian.oauth.provider":1826,
"com.atlassian.oauth.shared":254

bo

"breakdown.external" :{
"net.oauth":1417,
"net.oauth.client":505,
"net.oauth.http":356,
"net.oauth.server":245,
"net.oauth.signature":1503,
"net.oauth.signature.pem":562

}

}

Listing 1: Sample output after invoking the contains-oss.jar
tool - in this case both internal (proprietary) and external
(open-source) code is mixed inside a single Java binary Jar
file found within Atlassian Jira 4.1.1.

This paper introduces contains-oss, a GPL-licensed software
found at https://github.com/mergebase/contains-oss. contains-oss
is a command-line tool that measures the proportion of OSS soft-
ware in a binary Java (a Jar file). It implements the methodology

https://github.com/mergebase/contains-oss

MSR ’22, May 21-29, 2022, Pittsburgh, PA

described in the preceding section. It takes as input a directory
containing Jar, Zip, and War files (at any sub-directory depth) and
a listing of known OSS FQNs. From these inputs it computes the
proportion of lines of code (if debug information is available) or pro-
portion of methods (otherwise) that are OSS in the Jar. An example
of its output is presented in Listing 1.

5 RESULTS AND ANALYSIS

As a test of this methodology, we selected various industrial applica-
tions from 3 different organizations: 3 from Ford Motor Company*,
1 from Mergebase® and 1 from Atlassian®. In all cases we only used
the binary Jars of each application.

Figure 1 shows the results of contains-oss applied to five dif-
ferent applications. The percentage of the applications that are
open source ranges from 76.2 percent to 99.9 percent.

Open Source Percentage of Selected Codebases

Ford (micro)
Ford (small)
Ford (large)

Mergebase

Jira

0% 20% 40% 60% 80% 100%

Figure 1: Percentage of OSS across selected applications
Note: All Ford applications results were provided courtesy of Ford
Motor Company.

We observed that, for the Ford applications, the string “Ford ”
was sufficient to determine which FQNs where proprietary (i.e.,
authored by Ford developers). For the Mergebase and the Atlassian
applications we used our pre-computed set of Maven-Central FQNs
to determine whether an artifact was proprietary or OSS.

Table 1 report the results of an analysis of different versions of
Jira. The percentage of the codebase that is open source declines
from 86 percent in version 4.1.1 to a low of 76 percent in version
8.0.2. These measurements span from April 2010 (4.1.1) to October
2021 (8.20.0). The dip in lines of code between version 8.0.2 and
8.20.0 is due to the removal of unnecessary OSS dependencies.

Figure 2 shows open source measurements of Jira before and
after installing and setting up Jira. We performed this analysis to
examine whether Jira itself brings in additional logic during its
installation and initialization processes. The measurements are
nearly the same: 78 percent pre-setup (after downloading and ex-
tracting 2021-10-18-atlassian-jira-software-8.20.0.tar.gz) compared
to 79 percent post-setup (after getting Jira to launch and confirming
its correct operation).

These analyses suggest that the proportion of open source in
proprietary Java applications is very high, but it also varies a lot:
“Note: All Ford application results were provided courtesy of Ford Motor Company.

Shttp://mergebase.com
% Atlassian.com

Musseau et al.

Release | Date LOCS | Proportion of OSS
4.1.1 April 2010 6,988,990 0.86
5.0.1 March 2012 10,581,126 0.83
6.0.1 May 2013 11,626,264 0.82
7.0.2 November 2015 | 15,887,765 0.77
8.0.2 March 2019 15,550,557 0.76
8.20.0 October 2021 19,339,034 0.78

Table 1: Different releases of Jira, their size and proportion
of OSS in them.

0% 20% 40% 60% 80% 100%

Figure 2: Open Source in Jira Pre- and Post-Set Up

from around 76% to 99%. Over time, the proportion of OSS can vary
due to many factors: in the case of Jira, cleaning up dependencies;
in others it might be adopting new libraries as the features of the
application grow.

6 DISCUSSION

The methodology and the associated tool described in this pa-
per (contains-oss) is preliminary and its creation and proposal
leaves several open questions. The creation and application of
contains-oss to our own products has reinforced our belief in
the sore need for more conceptual clarity and associated measure-
ments for repeatedly and transparently measuring the extent to
which an application is open source. This section forthrightly de-
scribes the limitations of this methodology and contains-oss and
then makes a call for a research agenda and tool development to
overcome the current limitations of this methodology and tool.

First, what is the best definition of proportion of open source
in a given application? As we noted before, Sonatype reports that
“75 percent of all codebases were composed of open source”[11].
Sonatype does not publish its methodology, thus we do not know
how it came to this conclusion.

However, most OSS used in proprietary software are libraries.
And most software does not use all the functions/methods/class
in a library. In fact, a library may exist in the version control repo
of an organization, along with the proprietary software. Without
understanding the build process, it is difficult to know whether the
library would be part of the binary or not. The lack of clarity of
Sonatype’s and similar reports make it difficult to assess.

Our method does not perform static nor binary analysis to de-
termine which proportion of the OSS is actually used. Any small
application will be dwarfed by the size of any OSS libraries that it
uses; thus, it is unsurprising to see reports that OSS comprises the
majority of current proprietary software.

http://mergebase.com
Atlassian.com

Is Open Source Eating the World’s Software? Measuring the Proportion of Open Source in Proprietary Software Using Java Binaries MSR ’22, May 21-29, 2022, Pittsburgh, PA

6.1 Regarding threats to validity of our
proposed method

There are five notable limitations to contains-oss. First, the tool
currently only applies to Java codebases. Second, in the absence of a
list of OSS FQNGs, the user must designate a set of strings that denote
which files were authored by the party that produced the software.
This requires expert knowledge and cannot be easily applied at
large scale. This design choice also reflects an engineering practice
used by Java developers and so will not be applicable across all
programming languages. Third, the line counting procedure is itself
approximate, relying on breakpoints introduced by the build tool,
and undercounts the total number of lines in a file. Fourth, for files
not built with the debug flag set to true, contains-oss measures
and compares other binary entities. Fifth, should a developer copy
open source code into their codebase, there exists the possibility
that the Java Jar file labeled as proprietary will, in fact, include open
source code.

That said, we do not know of a tool with similar functionality
and offer contains-oss as a first step toward a broader research
agenda. Ideally, a tool designed to measure the extent to which a
codebase contains open source code would work across languages
and would contain a number of approaches to calculating the extent
to which a codebase is open source. Such approaches would include
counting the number of:

instructions

lines (as contains-oss currently does)

components

functions

open source lines actually executed (versus any open source
code which is bundled but never used)

6.2 Regarding support for other languages

Each programming language has its own idiosyncrasies regarding
how to build and bundle dependencies. Our method assumes no
dynamic linking, thus both open source and proprietary entities
are included in the binary. Even though not all languages have the
notion of a universal FQN; it might still be possible to create listings
of identifiers (at different levels of granularity) that might be identi-
fiable in the binary. The level of information available in the binary
will also vary from language to language and from developer to
developer: C/C++ have been usually stripped of debug information;
Javascript is often obfuscated. Accordingly, more research is needed
to determine information analysts can use to identify OSS entities
in a given application (such as the use of strings to identify origin
or source code entities[6]).

There is ample room for future researchers to select a larger and
representative corpus of codebases so that researchers can attain an
accurate global estimate of the prevalence of open source code in
software applications. In the meantime, these analyses demonstrate
the possibilities and complications of such an approach. Finally,
this research agenda should include a methodology and data source
for selecting a large set of representative industrial applications
(even if in binary form only) so that analysts can apply such a tool
and generalize results.

7 CONCLUSIONS

Measuring the extent to which the world’s software is composed
of open source software is possible, but contrary to appearances, is
more difficult to calculate than commonly understood. The chal-
lenges include creating measurement tools that can accept binaries,
not just source code, as input and partitioning a software artifact
into open source and proprietary sections. This paper describes one
methodology and associated tool for those who to undertake such
a measurement project.

Our development of this methodology and tool suggests that the
task is possible, even at a large scale.

From a purely empirical point of view, this paper contributes a
small collection of important data-points for software engineering
researchers, especially those focused on open-source software and
its reuse. We observed a high percentage of OSS present in a mix of
commercial Java systems, ranging from 76% to over 99%. We also
observed how smaller systems appear to use a higher percentage of
OSS. While most software engineering researchers and developers
rightly recognize that OSS constitutes the majority of software
present in most modern systems, we believe this paper is the first
to provide an empirical repeatable measurement.

REFERENCES

[1] Veronika Bauer, Lars Heinemann, and Florian Deissenboeck. A structured ap-
proach to assess third-party library usage. In 2012 28th IEEE International Confer-
ence on Software Maintenance (ICSM), pages 483-492. IEEE, 2012.

[2] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and

Sebastiano Panichella. How the apache community upgrades dependencies: an

evolutionary study. Empirical Software Engineering, 20(5):1275-1317, 2015.

Andreas Dann, Henrik Plate, Ben Hermann, Serena Elisa Ponta, and Eric Bodden.

Identifying challenges for oss vulnerability scanners-a study & test suite. IEEE,

2021.

[4] Daniel German and Massimiliano Di Penta. A method for open source license
compliance of java applications. IEEE Software, 29(3), 2011.

[5] Lars Heinemann, Florian Deissenboeck, Mario Gleirscher, Benjamin Hummel,
and Maximilian Irlbeck. On the extent and nature of software reuse in open
source java projects. In International Conference on Software Reuse, 2011.(ICSR),
2011.

[6] Armijn Hemel, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Dolstra. Finding

software license violations through binary code clone detection. In Arie van

Deursen, Tao Xie, and Thomas Zimmermann, editors, Proceedings of the 8th

International Working Conference on Mining Software Repositories, MSR 2011 (Co-

located with ICSE), Waikiki, Honolulu, HI, USA, May 21-28, 2011, Proceedings, pages

63-72. ACM, 2011.

Israel Herraiz and Ahmed E. Hassan. Beyond lines of code: Do we need more

complexity metrics? In Andy Oram and Greg Wilson, editors, Making Software -

What Really Works, and Why We Believe It, Theory in practice, pages 125-144.

O’Reilly, 2011.

[8] Bram Adams Israel J. Mojica Ruiz, Meiyappan Nagappan and Ahmed E. Hassan.
Understanding reuse in the android market. In 20th International Conference on
Program Comprehension, 2012.

[9] Meiyappan Nagappan Steffen Dienst Thorsten Berger Israel]J. Mojica Ruiz,
Bram Adams and Ahmed E. Hassan. A large-scale empirical study on software
reuse in mobile apps. IEEE Software, 31(2), 2014.

[10] Widura Schwittek and Stefan Eicker. A study on third party component reuse

in java enterprise open source software. In Proceedings of the 16th International

ACM Sigsoft Symposium on Component-Based Software Engineering, 2013.

Sonatype Inc. The 2020 State of the Software Supply Chain. https://www.

sonatype.com/2020ssc, Aug 2020.

[12] Synopsys Cybersecurity Research Center. Open Source Security and Risk Anal-
ysis Report. https://www.synopsys.com/software-integrity/resources/analyst-
reports/2020-open-source-security-risk-analysis.html, May 2021.

[13] Tetsuya Kanda Daniel M. German Takashi Ishio, Raula Gaikovina Kula and
Katsuro Inoue. Software ingredients: Detection of third-party component reuse
in java software release. In IEEE/ACM 13th Working Conference on Mining Software
Repositories, 2016.

[14] Tidelift. How to make open source work better for everybody. https://tidelift.
com/about/2018-tidelift- professional-open-source-survey-results, July 2018.

B3

[7

—_
_

https://www.sonatype.com/2020ssc
https://www.sonatype.com/2020ssc
https://www.synopsys.com/software-integrity/resources/analyst-reports/2020-open-source-security-risk-analysis.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/2020-open-source-security-risk-analysis.html
https://tidelift.com/about/2018-tidelift-professional-open-source-survey-results
https://tidelift.com/about/2018-tidelift-professional-open-source-survey-results

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Preliminary step (optional): create a list of open source entities and their FQNs
	3.2 Processing the Java binary to be analyzed

	4 Tool: contains-oss
	5 Results and Analysis
	6 Discussion
	6.1 Regarding threats to validity of our proposed method
	6.2 Regarding support for other languages

	7 Conclusions
	References

